
Philosophical Frameworks for Understanding Information Systems - Draft p. 1

Chapter 7.

A FRAMEWORK FOR UNDERSTANDING

INFORMATION TECHNOLOGY

RESOURCES

Information systems developers make use of information technology
resources and tools. These have to be designed, and much of the
research that is carried out in this area is aimed at producing better
resources and tools. Resources include the languages in which
knowledge may be represented (see chapter 6), ready-made modules
and libraries of software that developers can make use of, and
protocols for inter-program communication (which includes file
protocols for various purposes). Tools include editors, compiler,
linkers, debuggers, etc. usually now integrated into development
environment software.

 The communities that have researched and practised in this area
include computer science, software engineering, systems engineering,
software architecture, programming language design, KR language
design, and also the data modelling, object-orientation, logic
programming, knowledge based systems, and some artificial
intelligence communities. There is, of course, considerable
interaction and collaboration with IS developers since the latter
influence the shape of tools and building blocks delivered to them
(often the same person works in both areas). But whereas ISD is
concerned with specific types of application, this chapter focuses on
the creation and shaping of IT resources and tools that aspire to be
valid regardless of type of application. Yet it must always anticipate
their use by IS developers.

 The central philosophical question addressed in this chapter is: on
what basis can or should we understand the need for, and design of,
such resources and tools? The central practical question is: what
should guide such design?

7.1 INFLUENCES ON DESIGN

At least four influences on the design of such resources can be traced,
especially of programming and KR languages.

1. The way machines work. Computers work by obeying
instructions held in memory in sequence (some now employ several
parallel sequences), sometimes jumping to a sequence beginning
elsewhere in memory, and most of the instructions store bit patterns
in memory cells, or retrieve from them for processing. The way
computers work is reflected in assembler languages, which simply
provide convenient lingual tokens to express the sequences of
instructions. It is also reflected in some of what were called high-
level languages in the 1960s. For example in FORTRAN IV

2 Understanding Technological Resources Ch. 7

programs were composed of a sequence of individual instructions,
with many ’GOTO’ statements with numeric labels to alter the
sequence. Program variables were seen as symbol level versions of
memory cells. BASIC and COBOL also reflect this sequential
working.

2. Convenience to programmers. But that was not very convenient
to programmers. The GOTO construct, for example, was notoriously
blamed for making programs difficult to understand, debug and
modify, and was replaced by other control structures like REPEAT
and DO. The long sequence of instructions was replaced by short
syntactic units called blocks, which could be nested. Memory cells
were replaced by program variables bound together in structures, and
the content of these variables were expected to be processed as pieces
of data rather than bit patterns, which led to the need to define their
data type (integer, character, etc.). Complex mathematical formulae
could be written declaratively (this latter was found in FORTRAN: its
name is shortened from ’Formula Translation’). ALGOL, PASCAL,
BCPL, C, C++ and JAVA are languages that reflect this motivation
in their design.

3. Theories of how to represent knowledge. There are problems
with such ’procedural’ languages, and ’declarative’ languages began
to appear in response. Rather than specifying individual instructions
(’what to do’), these declare ’what is so’ and depend on some simple
internal software engine to work out what to do. Each reflects a
theory of how knowledge might be formalised and represented as a
program: a knowledge representation (KR) theory. LISP reflected the
theory that nested lists, with some being interpreted as (mathematical
or logical) functions, can constitute a program; it was an early
example of a ’functional language’. PROLOG reflects the theory that
knowledge can be formalised and represented as statements in first
order predicate logic, and is perhaps the best known ’logic
programming’ language. The Relational Data Model (RDM) as
originally conceived by Codd [1970] reflected the theory that all data
can be represented as points in multi-dimensional space and its
processing by set-theoretic operations. The Object-Oriented (OO)
model reflects the theory that knowledge can be represented as active
objects that fall into predefined classes. RDM and OO are discussed
later. OO is perhaps the predominant KR formalism in use today, but
there is a move to a fourth approach.

4. The structure of real-life meaning. Throughout the developments
above, another motivation is reflected in some languages: to recognise
what is meaningful in certain application areas. Usually this is made
available to the IS developers as ready-made features in a language.
For example, COBOL, though designed in the 1950s, has many
features that embody some of the things found meaningful in
business, including records with fields, dates, currencies, etc. APL
embodies some things found important in mathematical domains.
During the 1970s, Stamper’s [1977] LEGOL may be seen as an
attempt to recognise what is meaningful in the legal domain,
including agents and norms. Though not a language as
conventionally understood, geographic information systems (GIS)
may be seen as an attempt to recognise spatial things and operations.

Philosophical Frameworks for Understanding Information Systems - Draft p. 3

Wand and Weber [1995] have attempted a comprehensive general
ontology, though it might be seen as an example of reflecting a theory
(the philosophical theory of Bunge) rather than as sensitive to the
diversity of everyday life; it is discussed later. Many generalised
versions of domain ontologies built in the 1990s using Object-
Orientation may be seen as an attempt to formalise and generalise
specific spheres of meaning found in applications. Design Patterns,
an attempt in the field of architecture to design buildings and towns
that reflect the diversity of human living [Alexander, Ishikawa,
Silverstein, Jacobson, Fikidahl-King, & Angel, 1977] has been
proposed as an approach to designing the building blocks required for
software designers; this is discussed later.

 There is some overlap between the third and fourth. The theory-
based formalisms, LISP, PROLOG and OO could be seen as offering
capability to handle lists, logic and active things as found in real life.
But this is their hidden pitfall: making it easy and convenient to
handle such things, they privilege seeing the whole of the diverse
meaning of applications in those terms. This is often inappropriate
and constitutes a reduction. This echoes Dooyeweerd’s contention
that theory as such is not incompatible with everyday life, and can
even enrich it (§3.4.5); it is the theoretical attitude which causes
problems, by which we try to view all the diversity of life through a
single construct.

 A framework for understanding KR resources must include some
discussion for the link between the lingual activity of representing
knowledge and how computing machines work at the bit level, and
this is discussed later. Of the other three only the last will be
discussed in depth here. This is so for two reasons. One is
philosophical: we seek an understanding that is sensitive to the
everyday, so neither theories of how knowledge may be represented
nor the convenience of IS developers should circumscribe our
discussion. The other is practical, as expressed in the call for ’KR to
the people’.

7.1.1 ’KR to the People’

Reflecting on the experience of the 1980s, the decade in which KR
had become mature as a discipline and before it had been constrained
to become ’knowledge management’, Brachman [1990] suggested
what would become likely scenarios and what issues would
particularly need research. Many are still relevant today, especially
one that stood out as relating KR to the wider context of IS
development: ’KR to the people’:

 "It is likely that by the millen{n}ium ’knowledge systems’ will be a common
 commercial concept. This has important implications for the future of KR.
 Among other things, KR components will increasingly find themselves in the
 hands of non-experts, raising a novel set of issues" [Brachman, 1990,p.1090].

KR had become a specialist field from which ’the people’ were
excluded, mainly because, as mentioned above, it had become treated
as a theory about how to represent knowledge. But it is ’the people’
who should be the ones to use a KR language and other resources to

4 Understanding Technological Resources Ch. 7

construct knowledge (or information) systems because it is they who
are immersed in the everyday meaning of the application, including
all its nuances, cultural meanings and taken-for-granted assumptions
and norms. The need for ’KR to the people’ is clear in knowledge
management (KM), for example: much entry of complex knowledge
(as opposed to simple data) is undertaken by ’the people’ (e.g.
managers).

 But, though Brachman highlighted the issue of ’KR to the
people’, he made no attempt to address it. ’KR to the people’ has yet
to materialise. This is the main issue depicted in Vignette 1 in the
Preface, where this author tried to gain ’appropriateness’ by
distinguishing four ’aspects of knowledge’.

7.1.2 Appropriateness

What criteria should a KR language or toolkit meet in order to
facilitate ’KR to the people’? The conventionally recognised criteria
that emerged in the KR community are sufficiency, efficiency and
expressive power [Minsky, 1981], [Levesque and Brachman, 1985].
But these are criteria by which the various theories of KR could be
evaluated, and are not sufficient for a lifeworld approach. Basden
[1993] argued that another is more important: appropriateness.
Appropriateness is when the mapping from the meaning of the
domain to the available KR resources is natural: what is primitive to
our intuition in the domain is matched by a primitive building block,
leaving aggregation of building blocks to be needed only for what is
complex in the domain.

 In that proposal, which had its roots in the author’s experience of
representing knowledge relating to the laying out of electronic circuit
boards and to data in general medical practice in the 1970s [Basden
and Nichols, 1973], [Basden and Clark, 1979] and to the chemical
industry and the surveying profession in the 1980s [Hines and
Basden, 1986], [Basden and Hines, 1986], [Jones and Crates, 1985],
[Brandon, Basden, Hamilton and Stockley, 1988], the author
developed the notion of ’aspects of knowledge’ [Basden, 1993] that
had the characteristic of being irreducible to each other, long before
he had encountered Dooyeweerd’s notion. In retrospect, these can be
aligned with some of Dooyeweerd’s aspects:

 # items: analytic aspect (distinct concepts)
 # relationships: formative aspect (formed structure)
 # values: quantitative aspect (discrete amount)
 # spatial: spatial aspect (continuous extension)

with a fifth that was suggested later:

 # text: lingual aspect (symbolic signification).

 This concerns, not the syntax of a KR language as much as what
Chomsky [1965] referred to as the deep structure of languages -- the
broad kinds of meaning that its tokens have to convey or signify,
regardless of syntactic form.

Philosophical Frameworks for Understanding Information Systems - Draft p. 5

7.1.3 Extant KR Languages

Extant KR formalisms (KRFs) do not fulfil even that modest
proposal. Table 7.1.3 indicates the degree to which procedural,
functional, logic-programming and OO formalisms, COBOL and
GIS, and Basden’s [1993] proposal, facilitate representation of the
meaning of various aspects of applications.

 Table 7.1.3. Aspectual capability of extant KRLs

 Several things stand out. The first is the large number of aspects
for which no direct support is offered, and thus the general poverty of
extant KRFs. The second is that apart from Basden’s yet-to-be-
implemented proposal there are no instances of full support (denoted
by ’*****’). For example, though most support integers and
continuous numbers, only a very few languages support ratios as such
(including, for example, removing common factors by Euclid’s
algorithm). For example, support for the important formative notion
of structural relationships is inadequate by the extant KR approach
(for the full richness of relationships as we experience them). (An
early approach, similar to OO, Quillian’s [1967] semantic nets, did
have a richer notion of relationships, but sadly this was not taken up
by later ones.) From this analysis, the whole picture is rather
disappointing despite several decades of research and development in
the shaping of technology. There still remains considerable
opportunity for innovative and ground-breaking research and the
proposal made in this chapter might suggest a useful approach.

 Since 1993 a number of other authors have raised similar issues,
including Gennart, Tu, Rothenfluh and Musen [1994], Stephens and
Chen [1996], and Wand and Weber [1995]. The latter make a
proposal for a KR kit which we discuss below. Greeno [1994]
discussed a similar notion to appropriateness in user interface design:
affordance, which originated in biology with Gibson [1977]. But,
with the exception of Wand and Weber, few of these have attempted

Aspect

Juridical

Aesthetic

Economic

Social

Lingual

Formative

Analytic

Psychic

Quant’ive

Physical

Organic

Ethical

Pistic

Kinematic

Spatial

F.P.

 *

 **
 **

 **

 **

OO

 *

 *

 **

L.P.

 *

B1993

 **

 **
 **

COBOL

 **

 *

GIS

 *

 *

 **
 *

 *

Proc

6 Understanding Technological Resources Ch. 7

to ground their discussions in philosophy.

 The proposal outlined here is developed from a Dooyeweerdian
understanding of the nature of things, meaning and norms. It defines
appropriateness as offering the IS developer resources and
accompanying KR formalisms that directly and naturally express
aspectual meaning as we experience it in everyday life. In this way it
makes a promise of ’KR to the people’ that might be believable.

7.2 SEMI-MANUFACTURED PRODUCTS

The modules and other ready-made resources are designed and
programmed. In ISD (chapter 6) the technical artefacts are likewise
designed and programmed. So are they essentially the same? That
the software engineering methods used to create general resources
have proven largely inappropriate for development of IS artefacts for
use in human everyday life suggests there is a fundamental difference.
The kind of software entities of interest here are not shaped to any
particular application, but seem more general. Does the difference lie
in the degree of generality involved? Or is there some deeper
difference?

 The difference is not unlike that between building a house out of
bricks and creating the bricks out of which the house is built, or
crafting a piece of furniture by shaping blocks of timber and using
nails etc., and the creation of those blocks of timber and those nails.
We might build a traffic route-finder using the GD graphics library,
but someone else must create the GD graphics library. What sound
basis is there for differentiating between them?

7.2.1 The Notion of Semi-Manufactured Products

In his theory of entities Dooyeweerd recognised that what he called
semi-manufactured products (e.g. nails, planks) differ in a
fundamental way from what is made with them (such as furniture).
"In modern life," said Dooyeweerd [1984,III,p.129], "materials are
technically formed into semi-manufactured products, before they are
again formed into utensils." The IS artefact or system may be seen as
utensil; the IT resources from which it is made may be seen as semi-
manufactured products.

 Semi-products (or semi-manufactured products, SMPs) also do
not fit the scheme neatly. Dooyeweerd discussed the example of a
plank of wood that has been sawn and treated, but awaits being made
into furniture or some other thing [Dooyeweerd, 1984,III,p.131-2].
He claimed these have no internal leading aspect, but an external one.
Its meaning awaits fulfilment, in the construction of something else.

 This is the key difference between the resources being discussed
here and technical artefacts in IS. The IS artefacts have an internal
leading aspect, governed by ERC, but resources have none, because
their meaning awaits fulfilment.

 Dooyeweerd did not finalise the idea (and there is evidence that it

Philosophical Frameworks for Understanding Information Systems - Draft p. 7

was still under development [Dooyeweerd, 1984,III,p.132]).
(Indeed, consideration of IT building blocks might provide fruitful
ground for discussion of this issue by Dooyeweerdian scholars.)
Being undeveloped, the idea cannot give detailed understanding or
guidance. But it provides a useful starting point for understanding
technological resources made available to IS developers.

 Semi-manufactured products have the formative as their founding
aspect [Dooyeweerd, 1984,III,p.131]. But whereas nails and planks
are a mechanical technology (physical aspect), our building blocks are
information technology (lingual aspect). They are shaped, not by the
need to control and distribute physical forces, but by the need to
represent fragments of reality in all its diversity.

 This is presented as a general insight that might help prevent
erroneous aspirations, expectations or directions in research and
practice in this area. The requirements that guide creators of
resources should differ from those that guide IS developers, even
though both involve design and programming. Whereas IS
developers bear some responsibility for repercussions on stakeholders
(see ’Anticipating Use’ in chapter 6), the responsibility of creators of
resources do not; their responsibility is to aspectual meaning as such.
All such building blocks are made use of by IS developers to
construct their IT artefacts and systems. It is the joyful mission and
serious responsibility of those working in this area of technology
shaping to create such building blocks as make it possible for IS
developers to adequately represent all the reality they wish to. As has
been made clear in chapter 6, this could, in principle, involve every
aspect.

7.2.2 The Creation of the Artefact

But this needs to be understood by reference to what the IS developer
does when using such building blocks to construct an IT artefact (i.e.
program or KBS). S/he represents meaning of the domain of
application in some KR language (KRL). In this lingual process of
representing that which is relevant, s/he makes use of meaningful
ways of structuring (formative aspect) the concepts (analytic) that are
meaningful, both of which may likewise be of any aspect, as shown
in Fig. 7.2.2 (compare Table 6.5.1).

 The tokens of the KR language express and implement primitive
entities, properties, processes, etc. that are meaningful in given
spheres (aspects). Meaning of the domain might be of any aspect.
The lingual function of the tokens reaches out to all spheres of
meaning of the application domain. For example, Table 7.2.2 shows
the aspects in which various tokens of the C language are meaningful,
along with a few standard (ANSI) functions.

8 Understanding Technological Resources Ch. 7

 Figure. 7.2.2. The Process of Representing Meaning

 Table 7.2.2. Aspects of tokens of C language

Function in C language

Amount

Text string

Determine how many bits to use

Numeric comparison

Character

Aspect

Quantitative

Lingual

Psychic

Linguaol

AnalyticIdentity comparison

Assignment of value to variable

Quantitative

Formative

Increment, decrement Quantitative

Bitwise manipulation Psychic

C tokens

int
long, short
char
"..."
>, <
==

=
++, --, +=, -=
&, | , >>, <<

Apply same profedure multiple tiimes

Define a structure

Make a distinction

Pointer

Block of code or structure

Formative

Formative

Analyticc

Formative

AnalyticIdentify part of a structure

Define pointer

Formative

Formative

Define type of data Analytic

Find substring in string Lingual

for
if
{ ... }
struct
a->b
a.b
*var
typedef

strstr()
JuridicalCheck program validity

Trigonometric calculations Spatial

Sort a data array Formative

Remove a file Economic

assert()
sin(), cos()
qsort()
remove()

Function in C language AspectANSI function

Lingual

Formative

Analytic

 Quantitative
 Spatial
 Kinematic
 Physical
 Biotic
 Psychic
 Analytic
 Formative
 Lingual
 Social
 Economic
 Aesthetic
 Juridical
 Ethical
 Pistic

IS developer’s
aspectual
functioning

Program

Social

The domain
of application

Foundational
dependency

Anticipatory
dependency

Structuring
Syntactic
structures

Representation

Distinct
concepts

Tokens

Meaning

to be
represented

Meaningful

ways of
structuring

Meaningful

concepts

Philosophical Frameworks for Understanding Information Systems - Draft p. 9

 If the IS developer is to be facilitated in representing all the
diverse meaning of the domain, then the tokens and resources should
reflect the types of concepts and structurings that are meaningful in
every aspect. That is the central proposal of this chapter.

 This proposal seems so obvious as not to require much
discussion, but the ramifications of ’every aspect’ are enormous. As
Table 7.1.3 shows, most aspects are given no direct support. The
main support is for the quantitative, psychic, analytic, formative and
lingual aspects, and even in some of these support is very patchy.
Though C functions for a number of other aspects are shown above,
they are very few. This lack of support for most aspects might be
explained by their historical focus on reflecting theories about how
knowledge may be represented, rather than being orientated to the
everyday lifeworld meaning of domains.

 The norm of ERC, discussed in chapter 4, was that the user
should be enabled and encouraged, by the represented content, to do
justice to the meaning of the domain. If the IS developer -- especially
’the people’ -- is to provide represented content that does this, they
must find the process of, and resources for, representing knowledge
easy and natural. If facilities for aspects are missing then they will
find it difficult and unnatural.

7.2.3 Problems of Missing Aspects

If a sphere of meaning is missing, or made available only improperly
or partially, then either the IS developers are debarred from
representing such meaning, or else they must find ways to implement
it in available aspects. For example, to represent quantitative
meaning, tokens are needed to represent amounts, addition,
subtractions, and structurings, to represent arithmetic expressions and
equations, etc. -- most extant KRLs offer these. But also found in
everyday quantitative life are ratios, fractions, proportions, means,
standard deviations and other statistical things, approximations, and
infinity -- and most of these are absent from extant KRLs.

 To represent lingual meaning, the tokens and structurings needed
include words, phrases, sentences, paragraphs, vocabularies, thesauri,
emphasis, cross references, and the like -- but all that is usually
offered is the text string and a few character-based string
manipulation procedures or predicates: the necessary building blocks
for the lingual aspect are mostly missing. (One exception to this is
the HTML protocol, which includes tags for citing, samples, bullet
lists, tables, cross references, etc. as well as all the standard
’physical’ ones like italics.)

 This generates a number of problems, which to this day plague IS
developers.

 # Specialist knowledge. They need specialist knowledge of
 how to implement the missing aspectual things as data
 structures and algorithms. For example an arbitrarily
 complex shape (which happens to represent the boundary

10 Understanding Technological Resources Ch. 7

 fence of a piece of woodland) might be implemented as a list
 of coordinates that define its boundary and the type of curves
 or straight lines that join them (Fig. 7.2.3.1a), so they need
 skills in using linked-list structures. Worse, to expand the
 shape by a given amount (Fig. 7.2.3.1b) requires knowledge
 of complex trigonometry.

 Figure 7.2.3.1. A complex shape and its expansion

 # Oversimplifications. Even worse, the result of such
 expansion might be a shape with a hole in it (Fig. 7.2.3.2),
 in which case a single list of coordinates is insufficient. The
 IS developer needs to be aware of such exceptions to the
 ordinary assumptions they might make. Frequently, such
 complexities are not discovered until long after the basic data
 structures have been embedded in place for some time, and it
 proves very costly and dangerous to change them. A very
 common oversimplification is relationships, which are often
 implemented as pointers or database keys, even though, in
 everyday life, relationships involve inverses, have attributes
 and might even themselves make relationships. Such
 oversimplifications might be valid at first, but can cause
 problems later when the system is expanded for new usage
 contexts.

 Figure 7.2.3.2. A complex shape with hole

 # Inner workings. Sometimes the inner workings of the
 resources are exposed to the danger of interference, whether

(a) (b)

Philosophical Frameworks for Understanding Information Systems - Draft p. 11

 deliberate or unwitting.

 # Hidden side-effects. In some toolkits, the building blocks
 offered have hidden side-effects, which are meaningless to
 the pure form of the language but implemented nevertheless.
 For example, the ASSERT predicate in PROLOG, which, to the
 logical engine merely returns TRUE, but which, as a side
 effect, creates a new proposition or predicate. Such side-
 effects are dangerous, esoteric and make the IS difficult to
 maintain or upgrade.

 # Sometimes, extra building blocks are offered that implement
 anything other than such primitives, which can confuse ’the
 people’ and make the IS difficult to maintain or upgrade in
 the future. Wand and Weber [1995] speak of ’redundant’
 variables.

 # Sometimes there is undue ambiguity about the meaning of a
 building block, which lead to confusion, a reduction in
 interoperability between systems and in misunderstandings
 between people, whether developers, maintainers or users.
 The primitives should, as far as possible, accord with
 informed intuition of each aspect of knowledge; this will
 enhance intersubjectivity between and among developers and
 users.

 This implies that the building blocks offered should cover the
entire range of aspects, and should, together, do justice to the kernel
meaning of each aspect.

7.3 ASPECTUAL DESIGN OF TECHNOLOGICAL

BUILDING BLOCKS

How do we do justice to each aspect? One answer is that, just as
each aspect enables a fundamentally different type of being,
functioning, properties, relating, rationality, normativity, etc. in the
cosmos, so there should be building blocks for each aspect by which
the IS developer can enable all these as represented content that is the
technical artefact.

7.3.1 Philosophical Roles of Aspects to Indicate Primitives and
Tokens

One proposal is that a KR toolkit should provide primitive or basic
facilities that are meaningful in every sphere (aspect), which ’the
people’ (or other IS developers) can employ in construction of
artefacts and computer systems for human life. The KR language
should likewise be composed of tokens which express such basic
facilities of every sphere of meaning. To do this requires reflection
on the everyday experience of cosmic meaning in each aspect to
identify a reasonable set of basic facilities with ’the people’ would
find useful and meaningful.

12 Understanding Technological Resources Ch. 7

 In each aspect, ’the people’ experience entities, properties,
relationships, processes and so on. The meaning of each aspect is
manifested in the cosmos by means of its philosophical roles.
Therefore, our proposal here is that basic facilities and tokens can be
defined for each philosophical role of each aspect (refer to the
relevant subsections of the section ’Philosophical Roles of Aspects’ in
chapter 3):

 # Aspect as mode of being indicates types of ’things’ to make
 provision for (for example the sentence in the lingual aspect).
 # Aspect as ways of functioning suggests activity to provide as
 procedures (for example, Soundex searching, translation).
 # Aspect as basic type of property suggests attribute types to
 cater for (for example, emphasis, pronunciation, correctness
 of syntax).
 # Aspect as ways of relating suggests type of relationship and
 interacting (for example, cross reference, synonym).
 # Aspectual rationality indicates inferences to be built in (for
 example, if two sentences follow each other then it is likely
 they are about the same topic).
 # Aspectual law suggests constraints that would be meaningful
 (for example, vocabulary and rules of syntax).
 # Aspect as way of describing suggests the style of tokens of
 the ’language’ by which this meaning might be expressed.

Thus, if we wished to create a module comprising all the useful basic
facilities for an aspect, we would implement things, functionings,
properties, ways of relating, inferences, constraints and UI style for
that aspect. (KR ’language’ is not assumed to be solely textual, and
the tokens might be any input or output symbols; either as output to
the user via screen, speakers etc. or as input, via mouse or keyboard
gestures (for example, for the quantitative aspect, not only digits but
also sliders and bars of varying length are common ’tokens’.)

7.3.2 A Practical Proposal: Aspectual Modules

Thus we are presented with a philosophical proposal: create a distinct
module for each aspect. Here we present examples of what aspectual
modules might look like. organised in accordance with seven roles
that aspects fulfil in an application -- meaningful types of being,
properties, ways of relating, actions, inferences, constraints that it
would be meaningful to impose (within the software), and appropriate
input and output style. All the lists give merely a few examples to
illustrate or stimulate ideas, and they should be severely criticised;
much more research is needed to identify proper lists. This proposal
could be used in at least two ways: to suggest new lines for KR
research, and, when more fully developed, to provide a yardstick by
which extant KR toolkits may be evaluated.

Philosophical Frameworks for Understanding Information Systems - Draft p. 13

Quantitative Aspect (discrete amount)

Things: integers, ratios, fractions, proportions, etc.; also types that anticipate later
aspects such as ’real numbers’ for the spatial aspect

Properties: accuracy, approximation

Inferences: arithmetic Relatings: greater and less than, sets,
etc.

Constraints: e.g. a given quantity
remains that quantity until changed

Actions: incrementing, scaling,
statistical functions, etc.

O: Digits, Bar length, Contour lines
I: Hit keys, Drag bar, Drag contour

Spatial Aspect (Continuous extension)

Things: space itself, shapes, lines (straight or curved), areas, regions, dimensional
axes, etc.

Properties: size, orientation, distance,
side (in, out, left, right), etc.

Inferences: those of geometry and
topology

Relatings: spatial alignments and
arrangements, touching, crossing,
overlapping, surrounding, topology, etc.

Constraints: e.g. boundaries should not
have gaps

Actions: join, split, stretch, deform,
rotate, overlap, expand, etc.

O: Shapes, spatial arrangements
I: Drag to draw, modify

Kinematic Aspect (smooth movement)

Things: movement, path, flow, centre of rotation, etc.

Properties: velocity, speed, direction,
divergence, curl, duration of movement

Inferences: e.g. s = v * t -- those often
found in the field of mechanics

Relatings: faster/slower, forward/back,
travel together, etc.

Constraints: the Hare does beat the
Tortoise

Actions: start, stop, rotate, follow a
path, etc.

O: Animation
I: Joystick/keys to give direction, speed

Physical Aspect (Energy, mass, etc.)

Things: waves, particles, forces, fields, causality, impacts; also mechanical things,
chemicals, solutions, liquids, gases, crystals, materials, etc.

Properties: mass, energy, charge,
frequency, force, field strength, Newton-
power, etc.

Inferences: various energy functions,
etc.

Relatings: causes, attracts/repels, etc.

Constraints: conservation of mass /
energy / momentum, laws of
thermodynamics, etc.

Actions: physical interaction, expanding
a field by inverse square law, dissolving,
chemical reacting, etc.

O: 3D ray-traced perspective view
I: Haptic devices

14 Understanding Technological Resources Ch. 7

Organic (Biotic) Aspect (Integrity of organism)

Things: organism, organ, system boundary, tissue, air, food, life, population,
environment, dysfunctions; checksums, etc.

Properties: health, stamina, age, etc.
(c.f. the ’stats’ in role playing games)

Inferences: e.g. parent implies child Relatings: parent/child/mate, food
chains, symbiosis, system-environment,
etc.

Constraints: need for sustenance and
benign environment, etc.

Actions: regulate, grow, ingest, excrete,
reproduce, repair, die, etc.

O: Fractal 3D views
I: ’Soft’ haptic device

Psychic Aspect (Sensing, feeling)

Things: signals (sounds, sights, etc.), channels, states (esp. emotional), memories,
motor actions, etc.

Properties: colour (hue, saturation,
value), pitch, volume, etc.; angry, happy,
etc.

Inferences: Relatings: e.g. stimulus-response

Constraints: sensitivity ranges of sense
organs, etc.

Actions: respond, remember, forget,
feel, push, etc.

O: Colour, sound
I: Linear sliders (e.g. HSV for colour)

Analytic Aspect (Distinction)

Things: distinct concepts, objects, labels to identify things, etc.

Properties: truth values, difference and
sameness, etc.

Inferences: those of logic, etc. Relatings: contradiction, logical
entailment, identity, etc.

Constraints: e.g. principle of non-
contradiction, entity integrity (as in
relational databases)

Actions: e.g. distinguish, deduce

O: Icons, Menus, Tick boxes
I: Click to select

Formative Aspect (Formative power)

Things: structuring, relationships, modifications, plans, means and ends, goals,
intentions, power, etc.

Properties: feasibility, efficacy, version,
strength (as of a relationship), etc.

Inferences: graph searching, synthesis
activity, etc.

Relatings: means and ends, the
purpose of something, sequence of
operations (history), part-whole, etc.

Constraints: e.g. referential integrity

Actions: form, compose, relate, revise,
undo, seek, effect a meaningful change
(change a state), plan, etc.

O: Box-and-arrows graph; Buttons
I: Drag boxes, arrows; Click to activate

Philosophical Frameworks for Understanding Information Systems - Draft p. 15

Lingual Aspect (symbolic signification)

Things: nouns, verbs, etc.; words, sentences, etc.; bullet lists, headings, cross
references, quotations, etc.; word roots, languages

Properties: tense, case, emphasis,
cultural connotation, etc.

Inferences: those of syntax, semantics,
etc.

Relatings: synonyms, antonyms,
opposites, cross references, rhymes,
thesaurus relationships, etc.

Constraints: spelling, grammar,
pragmatic context, etc.

Actions: write, draw, understand, send
message, text search, find equivalent
meaning, translate, etc.

O: Text
I: Alpha-numeric characters (keyboard)

Social Aspect (social interaction, institutions, keeping company)

Things: person, group, role, institution, title, name, nickname, etc.

Properties: status, leadership, formality
and informality, address (postal, phone,
email), etc.

Inferences: e.g. how to address
someone

Relatings: friendship, acquaintance,
respect for, membership, organizational
structure, hierarchies, etc.

Constraints:

Actions: communicate, befriend, adopt
a role, give respect, etc.

O: Organisation charts, etc.
I: As analytical+lingual?

Economic Aspect (Frugality, limited resources, managing)

Things: resource, limit (complex), supplier, consumer, exchange, market, human
resources, etc.

Properties: limits, prices (values), etc.

Inferences: e.g. management
forecasting

Relatings: supplier-consumer,
relationship with resource limits, inter-
currency, etc.

Constraints: e.g. no net loss of
resources except via defined inputs and
outputs

Actions: distribute resources, allocate
price, etc.

O: e.g. Tables of figures
I: As analytic+quantitative

Aesthetic Aspect (Harmony, enjoyment)

Things: nuances, harmonies, surprises, humour, fun, leisure, sport, etc. plus all the
beings found in the various arts

Properties: situatedness, harmony,
surprisingness, paradox,
interesting/boring, etc.

Inferences: Relatings: nuance, echoing,
counterpoint/complementarity, etc.

Constraints: "Less is more in art" [C.S.
Lewis]

Actions: harmonize e.g. music, play
with, etc.

O: Decoration + accompanying music
I: As psychic with fine control
Both e.g. Colour circle device

16 Understanding Technological Resources Ch. 7

 Despite the serious flaws in the lists, they exceed those supported
by most extant KR approches. Furthermore, the reader is likely to
agree that the things mentioned are not esoteric, but are features
encountered in everyday living.

 Some of the benefits that might be expected if such a proposal
was actualized include the separating out of different characteristics of
things (e.g. spatial things are continuous rather than objects), easing
of the task of IS developers, fewer errors during development,
enhanced reliability of software, enhanced ability to extend and
upgrade it as requirements change, especially unforeseen ventures into

Juridical Aspect ("to each their due")

Things: dues, responsibilities, rights, coded laws, policies, contracts, security
measures, owners, policies, (in)justice, etc.

Properties: security ratings, equity,
proportionality, appropriateness, etc.

Inferences: e.g. consider evidence Relatings: retribution, ownership, etc.
Many cross-references between clauses

Constraints: laws of land, idea of what
is due to each type of thing, ensure
consistency, etc.

Actions: make contract, decide the
essence of a case, judge, make
retribution or recompense, etc.

O: Text with cross references
I: As lingual?

Ethical Aspect (Self-giving love)

Things: attitudes, gifts, sacrifices, etc.

Properties: generosity, etc.

Inferences: Relatings: Buber’s I-Thou relationship,
marriage/troth, etc.

Constraints: self-giving must be
genuine, not for gain, etc.

Actions: give (without expectation of
reward), forgive, etc.

O: As lingual+aesthetic?
I: As lingual+aesthetic?

Pistic Aspect (vision, faith, committing)

Things: commitments, beliefs, trust, creeds, rituals, etc.

Properties: degree of certainty,
trustworthiness, etc.

Inferences: Relatings: committed-to, believe-in,
trust, etc.

Constraints: commitments should be
kept, etc.

Actions: make a commitment (after,
maybe, weighing up the evidence), trust,
worship, etc.

O: As lingual+aesthetic?
I: As lingual+aesthetic?

Philosophical Frameworks for Understanding Information Systems - Draft p. 17

new aspects of use.

 What is proposed here has not yet been implemented in full, but
the author’s Istar KBS software [Basden and Brown, 1996] started to
be developed along these lines. One reason to believe it might be
feasible (in the long term) is that there is real-life software qualified
by each aspect, which offers some of the basic facilities mentioned.
Table 7.3.2 shows some of the extant software that provide some of
the facilities related to each aspect. It demonstrates clearly that at
least some meaning in every aspect has been represented in software,
and thus that it is at least possible to do this.

 Table 7.3.2. Aspectual capabilities of extant software

7.3.3 Implementation at the Bit Level

In terms discussed in chapter 5, these basic facilities are the raw
pieces of data, each being of a particular type depending on the
aspect. But these are implemented in things meaningful in the
psychic aspect, such as bit patterns, memory address adjacency,
machine code and digital signals. So there must be a mapping
between bit patterns to basic types of data, and between machine code
and the valid manipulations for these types of data. But, owing to the
irreducibility of the aspects, these mappings are never given a priori,
but must be designed by us. In principle, aspectual basic type of data
requires its own different mapping.

 Table 7.3.3 shows some of the mappings for each aspect. (FPB

Quant’tive Calculator, Statistics package

Spatial Drawing packages,
Geographic Information Systems, Computer-Aided Design

Kinematic Animation packages, Fluid flow packages

Physical Weather forecasting systems, Solid modelling systems

Biotic Medical software, Genealogical software, Life games

Aspect Example software

Sensitive Painting and photographic software

Analytical Mind-mapping software, Deduction software

Formative Planning software

Lingual Word processors, KBS, Web browsers

Social Email

Economic ERP systems, Critical path analsys software

Aesthetic Music composition software

Juridical Will-writing, contract-writing software

Ethical ?

Pistic ?

18 Understanding Technological Resources Ch. 7

refers to ’fixed point binary’, a quantity that increases using binary
coding from 0, represented by all bits 0000..0000, to 1.0 or 100%,
all bits 1111..1111, however many bits are used. Note the important
word ’contiguous’ in the bit column, which refers to the bit patterns
running contiguously in memory, which is a phenomenon meaningful
in the psychic aspect.)

 Table 7.3.3. Bit pattern codings for selected aspectual building blocks

 This table shows a number of things. One is that most of the bit
codings are for the early aspects. Because of foundational
dependency (q.v.), many types of data in the later aspects make use
of types in earlier aspects. For example, economic price, double-
entry book-keeping or transfer of resources usually make use of
quantitative amount, analytic distinction and formative relating.

 Nevertheless, there seems to be still some meaningful facility in
the later aspects which cannot be seen in terms of facilities of earlier
aspects, an example being data compression such as by Zip coding,
which yields, not amounts or relations but merely a long bit pattern.

 Notice also the empty ethical and pistic cells. This might be due
to the down-playing of these aspects in modern life. It may be that if

Quantitative Integer
Ratio

Proportion, Probability
’Real’ number

Binary, BCD
Two contiguous bins
FPB 00..00-11..11
FPB mantissa + Bin exponent

Spatial 2-D field (e.g. Funt)
(x,y) complex number

Direction, angle

Bitmap (grid of bits)
Two contiguous Man+exp
Circular FPB

Kinematic Movement

Physical 3-D grid
Collision detection

Array of reals
’AND’ bitmaps (Amiga)

Organic-Biotic Integrity of data Checksums

Aspect Basic facility Bit pattern coding

Psychic /
Sensitive

Colour
Picture

Sound waveform

3x8 bits each FPB for RGB
Grid of colour cells
Contiguous array of FPBs

Analytic Distinct concept (datum)
Truth value

Allocated contiguous memory
Single bit (0, 1)

Formative Structure
Relationship

Contiguous memory.
Memory address (pointer),
Linked list

Lingual Text characters
Emphasis (bold etc)

ISO, EBCDIC
ANSI Escape sequences,
 or bits to flag style

Social URL / email address Four FPBs

Economic Data compression e.g. Zip coding

Aesthetic

Juridical Data protection 128-bit encryption

Ethical
Pistic

Pen colours alterations
Sequence of bitmaps by pointers

Philosophical Frameworks for Understanding Information Systems - Draft p. 19

ICT had been developed, not in the West, but in sub-Saharan Africa,
where generosity is a way of life and the spiritual is not divorced
from the physical, that these cells would have been full.

7.4 INTEGRATION

The distinctness of aspectual modules is guaranteed by aspectual
irreducibility. But how are these to be integrated so that the IS
developer can harness the philosophical roles of all aspects relevant to
their needs to construct their IT artefacts or systems? This may be
done by providing features that reflect the inter-aspect relationships of
dependency, analogy and reaching out (§3.1.4). Some of this is
found in current practice, though it is seldom recognised as such, and
a Dooyeweerdian view might help clarify issues and stimulate new
directions for research.

7.4.1 Foundational Inter-aspect Dependency

Inter-aspect dependency in the foundational direction (see §3.1.4)
implies that a module for any aspect will require the facilities offered
by a module of earlier aspects. Thus if aspect Y is later than aspect
X, then a KR toolkit that has a module for Y will also usually need at
least part of a module for X, incorporating X-things in its data
structures (or OO classes) and calling X-procedures in its procedures.
This type of inter-module link has been well-known almost since
computers were invented (the subroutine concept) but perhaps in a
rather arbitrary manner. The main contribution Dooyeweerd might
make here is to provide strategic clarity to the designer of a suite of
modules. Such clarity is particularly important to meet the challenge
of complexity in OO systems.

 Inter-aspect dependency implies a cosmic order among the
aspects, but this is not simply a linear sequence. Rather, it forms a
directed acyclic graph that, as illustrated in Fig. 7.4.1. Inter-aspect
dependency can be direct or indirect. For example, in its
foundational direction social interaction depends directly on lingual
functioning, analytical distinguishing of who is important in a social
situation, and sensitive aspect of emotion towards others. It also
depends indirectly on these in that, for example, the lingual aspect
itself depends on the sensitive aspect of making sounds with mouth
and hearing those sounds, and the analytic aspect of distinguishing
which sounds have lingual purpose. Making sounds depends in turn
on physical functioning (of air-pump, tautness of vocal cords,
resonant cavity of mouth, etc.). But none of these earlier aspects
depend foundationally on the social (though knowledge of them does).
In principle the graph is fully connected, but in practice some links
are latent rather than actual; see Dooyeweerd [1984,II,p.164] for a
discussion of foundational dependency.
file pix/D-DepcyDAG

 Implementing this is relatively straightforward because the
designer of a module will know what facilities from earlier modules
will be needed. But anticipatory dependency and analogy are more
challenging.

20 Understanding Technological Resources Ch. 7

 Figure 7.4.1. Directed acyclic graph of some foundational dependencies

7.4.2 Anticipatory Inter-Aspect Dependency

Dependency in the anticipatory direction looks towards what an aspect
facilitates rather than what facilitates it. It is concerned with cosmic
possibility, much of which has yet to be opened up. Much of this
anticipatory meaning, especially in the earlier aspects, has been
discovered and opened up by centuries of scientific and other
endeavour, but it is likely that much has yet to be discovered and
opened up in the later aspects. Anticipation is essential to
Dooyeweerd’s theory of progress (q.v.), and in IS it is relevant to
building future-proof computer system architectures.

 To Dooyeweerd, the possibility of facilitation of later meaning is
within the aspect from the start. But irreducibility of aspects implies
that the way in which an earlier aspect facilitates a later cannot be
determined a priori, and its anticipations are opened up by creative
human endeavour. This means that when we design a module for an
early aspect we might find, a considerable time later, that the way we
have designed and implemented it is insufficient to support the new
meaning, or at least clumsy in doing so.

 Compare the use of fixed-point binary numbers (FPBs) to
implement probabilities (range 0--1) and angles or directions (0 -- 360
degrees), where bit pattern 111..11 implements the maximum in each
case. Adding two probabilities 0.75 + 0.75 should result in either a
probability of 1.0, an error flag, or both. But adding two three-
quarters of 360 degrees (viz. 270 + 270) should result in 180 degrees
and no error. If the quantitative module provides only one type of
FPB addition-behaviour (as is usually the case) then one or other of
these implementations will fail.

 The designers of an aspectual module can be expected to have
expertise in that aspect but perhaps not in others. The designers of
the quantitative module cannot always be expected to know aforetime
all the subtly different types of quantities and behaviours needed.
Nor, similarly, for all other aspectual modules. This is pernicious
because usually the modules that implement the earlier aspects are
developed first. But unless we consider all the anticipations of later
aspects during this process, then we stand the risk of overly
constraining our later possibilities because of untoward assumptions
made. For example, we implement the building blocks of the lingual

Physical

Biotic

Psychic

Analytic

Formative

Lingual

Social

Philosophical Frameworks for Understanding Information Systems - Draft p. 21

aspect to support lexics, syntax and semantics -- and fail to cater for
the complexity of linguistic pragmatics which anticipates the social
and later aspects. (The earlier example of implementing shapes in a
way that precludes holes is similar, but it is within a single aspect.)

 Failure to anticipate can be a particular problem with off-the-
shelf modules unless one knows that its designer has an attitude of
openness to later cosmic meaning.

 Therefore each module should be designed in such a way that it
anticipates later modules without needing to be rewritten when they
arrive. It might be years before they do, by which time the module
has been embedded in many applications. The challenge is how to
cater for unforeseen new types of things, functions, properties,
constraints, and so on, providing a clean way of enabling a module to
function in a different way when unanticipated cosmic meaning
presents itself. This is not the same as the challenge to the IS
developer of altering a business application system when the business
requirements change; that type of change usually reflects a change in
the entity side. The challenge we face here is a change in (our
knowledge of) the law side. It is more fundamental and requires
more careful consideration.

 Call-back hooks is one way of catering for unforeseen
expansions, but usually they are provided grudgingly and without
much careful thought. The OO community’s emphasis on
polymorphism might constitute a partial recognition of anticipatory
dependency, but their penchant for encapsulation works against
making it possible. As far as this author is aware, research into this
issue of law-side anticipatory dependency is long overdue.

7.4.3 Inter-Aspect Analogy

Inter-aspect analogy, in both directions, is as difficult as anticipatory
dependency to predict and cater for.

 Take the case of causality, discussed in relation to KR by Nilsson
[1998,p.326ff]. Causality is seen, not as physical, but as an intuitive
linking of ’causes’ and ’effects’. As a result of knowledge elicitation,
a ’causal network’ of nodes and arcs may be built, throughout which
effects may be propagated from ’first causes’ in order to simulate the
domain or make predictions. For each aspect a slightly different
’causality’ algorithm is likely to be needed. Nilsson argues that the
Bayesian algorithm for accumulation of evidence is appropriate for
such causal links, which makes probabilistic rather than precise
calculations of effects from causes. This notion of causality has
become established within the KR community so that Bayesian
networks furnish the IS developer with a kind of general purpose
building block for representing causality. The Bayesian algorithm is
very useful because its ability to approximate can overcome many
minor discrepancies between different aspectual repercussions, it can
cope with non-determinate repercussions, and it is, in effect, an
acknowledgement that some antecedent parameters have been omitted
from the represented content. But its usefulness can mislead.
Basden, Ball and Chadwick [2001] found (without any reference to

22 Understanding Technological Resources Ch. 7

Dooyeweerd) when assessing the amount of trust one can place in
Internet certificates, which involved echoes of causality in the
juridical, pistic and other aspects, that the algorithms required are
very different.

 There are differences from anticipatory dependency, which might
indicate a different approach to catering for inter-aspect analogy.
Analogy lacks the necessity found in dependency, and, by its nature,
analogy is often more difficult to clearly define. Perhaps extensibility
features similar to those required for anticipatory dependency will be
adequate, but since their exact form is likely to be different, it would
be wise to keep them separate.

 What is novel in this proposal is not that we can, for example,
use causal networks for pistic software, but that we can guide the
development of such general purpose facilities according to aspectual
analogies, rather than in an ad-hoc manner.

7.4.4 Implementing Aspectual Reach-out

Aspectual ’reach-out’ might be rather easier to cater for. This is not
esoteric, and many examples of features that have been added to
mature real-life software qualified by different aspects to make life
easier for users. But these accretions have been largely ad-hoc, and
Dooyeweerd’s aspects could perhaps provide some systematization.
For example:

 # Quantitative reach-out implies a different kind of amount in
 each reached-to aspect. This implies a need for units
 associated with each aspect (feet, metres, pounds, kg,
 currency, etc.), the ability to convert between units at the
 will of the user, and to add new units when necessary.

 # Analytic reach-out implies a different type of distinction in
 each aspect and different types of inferences. Social logic
 differs from physical [Winch, 1958]; see §3.1.5. This can
 implies different types of identification and deduction for
 each aspect -- as was realised quite early by for example
 Stamper [1977], who was struggling with how to store legal
 data. It may be that taking account of Dooyeweerd’s suite of
 aspects can stimulate new directions in research, which
 currently are at the mercy of the accidental attempts to apply
 them to new types of application.

 # Lingual reach-out concerns the Chomskian deep structure of
 languages, and can be used to test and generate proper
 grammar as well as sense. Dooyeweerd’s aspects could point
 to new syntactic and semantic structures and laws to be
 incorporated into lingual software (such as verse).

7.4.5 Reflection

The vision of an integrated, multi-aspectual KR toolkit and language
presented here is a long-term one and will require considerable
research effort. Before it can be properly judged, we should attempt

Philosophical Frameworks for Understanding Information Systems - Draft p. 23

to define comprehensive modules for every aspect and how to
integrate them. There is evidence that this may be possible and even
desirable, because features are becoming important in practical
software even today, as indicated in Fig. 7.3.2, even from later
aspects -- such as the juridical feature of copyright notices and
authentication checks, and extant research into many of these issues
continues apace, being forced upon us by our everyday experience.

 So it may be that the main contribution of this proposal is not the
vision of a grand multi-aspectual toolkit so much as that it provides a
basis on which the diverse areas of research may be integrated as part
of a wider picture.

 The vision of a multi-aspectual toolkit designed in this way opens
up an intriguing possibility: is it possible to insert new imaginary
virtual law-spheres among the given ones, or perhaps modify the
meaning of existing ones, and then create virtual worlds with these
and see how well they run? This could, in principle, forge an
interesting test for Dooyeweerd’s suite of aspects against others.

 However, there are several problems with our proposal that need
to be addressed over the longer term. First, it is not always clear
what shape a toolkit might take for the later aspects, such as the
juridical. It might be that (as currently) it is sufficient to express all
the post-lingual aspects in language. But there is reason to suspect
that, as application in later aspects matures, we will find we need
something that cannot be written in language but must be
implemented directly at the bit level (assembly language) as a
primitive symbolic signification of aspectual meaning; this is not for
efficiency reasons but to do justice to its meaning. Or, alternatively,
we must fall back on domain meaning being inscribed into the context
of use (the user’s own knowledge and lifeworld experience) rather
than represented in the technical artefact as such (see ’Creating the IS’
in chapter 6).

 Second, if a complete set of facilities were implemented for every
aspectual module would not the resulting software package be
unwieldy? Though this has not been researched yet, there are two
reasons for believing this might not be entirely so. One is that the
aspects are readily learned, and intuitively grasped; as Winfield
[2000] and Lombardi [2001] have found, it becomes second-nature to
consider them in any situation. The other is that since the aspects
have irreducible meaning, then clear separation should be possible
between building blocks of each aspect. "A thing should be as simple
as possible, but no simpler" says Budgen [2003,p.75-81], and the
reality which IS developers encounter and represent is of an aspectual
complexity that should not be unduly simplified, but rather supported
and made explicit and understandable. Good modularity involves
what they call "separation of concerns", and this is precisely what
this proposal offers.

7.5 RELATING TO EXTANT DISCOURSE

The above has outlined a long-term project for a KR toolkit inspired
by Dooyeweerd. Here we discuss how it might help address the

24 Understanding Technological Resources Ch. 7

important issue of how the lay person can do their own IS
development, how a Dooyeweerdian approach might be used to
critique extant proposals for data models or KR languages, and its
relation to Alexander’s Design Patterns.

7.5.1 Dooyeweerdian Critique of Extant Data Models

It is possible to use Dooyeweerdian philosophy to analyse data models
and KR approaches. There are two ways. We could set up a
Dooyeweerdian proposal, as outlined above, as a yardstick against
which to measure the data models; for example, we could find out in
which aspects they are strong or weak. Alternatively, we can look at
the problems each has experienced in everyday life and explore how
Dooyeweerd might explain those problems and perhaps propose a
solution. The latter will be used. The approach will be to expose
root presuppositions or aspectually-inspired world-views.

 Three brief analyses will be presented to illustrate the kind of
approach that might be taken, rather than attempting comprehensive
critiques.

7.5.1.1 The Relational Data Model

The relational data model (RDM) was defined by Codd [1970] as a
reference model to structure and search data in databases. The
popular version, available in current software, sees the world as tables
containing records, which are composed of sets of attributes that
contain values; some attributes may be keys that point to other tuples,
thus forming relationships. But Codd’s original data model (’pure’
RDM) treated data as points in multi-dimensional spaces. Each table
(’relation’) is a multi-dimensional space, in which each axis of the
space represents an attribute in which all its possible values are
mapped onto positive integers, allowing infinitely many possible
values in any attribute if desired. Each record in the table (tuple of
such integers) is a point in the space. All operations are on sets of
tuples and generate other sets. The latter allows operations to be
chained together to provide very sophisticated overall operations.

 But pure RDM gives problems. If two tuples have the same set
of attributes (e.g. two men of the same name) they are the same point
and so have no separate existence in the relation (cannot be stored as
separate records); but in real life this restriction is onerous even if
rarely encountered. Second, if we allow keys to form relationships,
we introduce the problem of relational disintegrity. Third, many
people misapply the relational join because they keep forgetting to
make two key-attributes equal to each other. Fourth, the set of
operations that immediately offer themselves do not match the
operations we want in everyday life (for example, the cartesian
product is almost useless while the more useful join is absent and
must be assembled from basic operations). Fifth, ordering of records
is not supported in pure RDM. (Practical relational models do allow
duplicate records, sorting, etc. due to accretion of ’dirty’ features on
top of ’pure’ RDM, as the language or data model was exposed to the
everyday life of IS developers.)

Philosophical Frameworks for Understanding Information Systems - Draft p. 25

 The root of these problems becomes clear when we understand it
aspectually. The analytic-formative notion of entities and
relationships is reduced to the quantitative-spatial notion of points in
space. Whereas the analytic aspect allows distinction of two things
with same properties, the spatial does not. Treating a relationship,
which is a formative thing, as quantitative forces ’the people’ to
handle artificial attributes, leading to the second and third problems.
Ordering is a formative notion and has no meaning in the spatial
aspect (though it could perhaps be argued that the quantitative aspect
involves ordering). This can explain the accretion of features foreign
to the original reference model.

7.5.1.2 Object- and Subject-Orientation

The object-oriented (OO) KR approach sees the world as objects that
possess a number of attributes and operations, as dictated by pre-
defined classes, which are very easy to define by inheriting properties
from other classes. The design ethos emphasises reusability (an
economic norm) by means of polymorphism and encapsulation.
Much of the work of OO programming consists of defining classes of
objects, in terms of their attributes and operations. For example
(example from Harrison and Ossher [1993]):

 Class: Tree
 Attributes: Height, Weight, CellCount, LeafMass
 Operations: Grow, Photosynthesize

There are many standard texts on OO, a classic being Booch [1991].

 Though it has become the premier KR approach of today, it
exhibits problems. While many arise from foibles of specific
implementations and variations (such as whether multiple inheritance
is allowed), some are more fundamental. Harrison and Ossher
discuss one of these: the notion of object as of pre-defined type is not
only philosophically suspect but also problematic in practice. In
particular, other attributes and operations, not in the class, might be
meaningful to different subjects. To a tax assessor, the tree’s
meaningful attributes include AssessedValue and meaningful operations
include EstimateValue and ComputeTax, to a forester, these would include
SalePrice, TimeToCut, ComputeProfit, while to an eagle, they would include
FoodValue, ComputeFlight (the subjects do not have to be human). Such
issues become important especially when developing suites of
cooperating application programs.

 Might this diversity of attributes be met by simply defining the
class with as many attributes as possible and then filtering out those
that are not needed by each program? Harrison and Ossher think not,
on the philosophical grounds that "subjective perception is more than
just a view filtering of some objective reality. The perception adds to
and transforms the reality" [p.413].

 A Dooyeweerdian analysis of OO reveals first several ways in
which it follows the Dooyeweerdian view:

 # Classes, with their inheritable properties, may be seen as a
 simple attempt to implement type laws (see §3.2.5).

26 Understanding Technological Resources Ch. 7

 # The class-subclass hierarchy is commensurable with
 Dooyeweerd’s notion of types, subtypes, etc.
 # The notion of ’object’ as a thing that acts and possesses
 properties by virtue of classes is at least commensurable with
 the Dooyeweerdian notion of subject as something that is
 active by virtue of responding to law.
 # Multiple inheritance (where allowed) recognises the
 irreducibly distinct spheres of law and meaning.
 # That objects can override what is inherited from classes
 reflects the plasticity of type laws.
 # Polymorphism reflects all things, of whatever type, being
 governed by same spheres of law.

 But there are also a number of differences, some of which can
explain the problems and perhaps provide a way to overcome them.

 # Encapsulation assumes a part-whole relationship, but
 sometimes the developer wishes to see or manipulate some
 ’hidden’ property, such as efficiency. This could be allowed
 by restricting encapsulation to genuine part-whole relations
 and allowing aspects of the object that tend to become
 hidden, to be always visible in principle.
 # The hierarchical nature of the inheritance relationship betrays
 a universalistic notion of the totality of things. Dooyeweerd
 criticises this and replaces it, not with an individualistic
 notion, but with enkaptic interlacements. For example:
 # Hermit crab and shell: objects linked by subject-object
 enkapsis
 # Data, algorithms, bit level implementation thereof:
 objects linked by foundational enkapsis
 # City and orchestra, football team, university: objects
 linked by territorial enkapsis
 # Fauna and flora living in habitat: objects linked by
 correlative enkapsis
 But OO can find it difficult, or at least inappropriate, to cater
 for these using only the part-whole and inheritance relations
 alone.
 # The notion of object itself is problematic, because it
 presupposes the primacy of existence over meaning.
 Harrison and Ossher’s notion of subject-orientation comes
 closer in that the nature of the object (as defined by its
 properties) depends on what it means to various subjects, and
 this is dynamic.

 Harrison and Ossher use the example of a tree having many
subject-relevant properties. So, coincidentally, does Dooyeweerd:

 "The tree’s structure seems at first to be simple, but on deeper theoretical
 analysis it proves to be highly complex because this structure appears to be
 possible only in the universal inter-structural coherence. ... Here this natural
 thing proves to be included in an extremely complex interwovenness with the
 structures of temporal human society." [1984,III,p.833]

 But Harrison and Ossher’s proposal might also exhibits
weaknesses, in line with the current vogue towards subjectivism. It is
in danger of dissolving the object, such as the tree, into amorphous

Philosophical Frameworks for Understanding Information Systems - Draft p. 27

nothingness and of giving no fundamental basis for differentiating
types of object. But, as Dooyeweerd realised, everyday experience
does not allow this but things present themselves to us with their own
natures even while these can be of variable meaning to different
subjects. His solution was type laws, which are founded on the more
fundamental laws of aspects and yet are of immense plasticity, might
offer the stability their proposal lacks. Even without type laws, if
Dooyeweerd’s notion of diverse law spheres (aspects) were to be
implemented in a way that transcends all classes and objects, allowing
them to respond to any such laws without requiring the developer to
explicitly specify in advance which are relevant to their objects or
classes, then it would be relatively straightforward to allow
unforeseen properties to be added to objects in a non-cumbersome
manner.

7.5.1.3 The Wand-Weber Ontology

Wand and Weber [1995] sought to define the building blocks for a
truly comprehensive KR approach. They outline three models, a
state-tracking model, concerned with how a computer system
responds to and keeps track with the real world, a decomposition
model, concerned with decomposing a system into subsystems, and a
representational model, concerned with the grammatical constructs
that the KRL should offer, and how they relate to the ontological
constructs that should be offered, if they are to be both complete and
clear. Their representational model is the most detailed and is
philosophically grounded in Bunge’s [1977] Ontology 1: The
Furniture of the World, because, they believed, "it deals directly with
concepts relevant to the information systems and computer science
domains" and "Bunge’s ontology is better developed and better
formalized than any others we have encountered." [Wand and Weber,
1995,p.209] The grammatical constructs map one-to-one to the
following ontological constructs:

 # things, properties, states (stable and unstable), events
 (external and internal, well- and poorly-defined),
 transformations, histories, couplings, systems, classes and
 kinds,
 # laws that pertain to these: state laws, (lawful) conceivable
 state spaces, (lawful) event spaces, lawful transformations,
 # and, related to system: system compositions, system
 environments, system structure, subsystems, system
 decompositions, level structures.

 This goes further towards appropriateness than other KR
approaches but when they show how it may be used as a yardstick for
data models by evaluating the entity-relationship data model, it
becomes clear there are some deficiencies, around events,
transformations and systems and, to some extent, laws. Some of
them are as follows.

 Event is defined as "A change of state of a thing." This may be
satisfactory when considering the values held by properties, but not so
appropriate when considering the creation and deletion of a thing,
spatial changes or changes to the global context. Basden [1993]

28 Understanding Technological Resources Ch. 7

argued that items and relationships cannot be reduced to values, even
if they might be able to be implemented as properties. To say, in
extremis, that we could treat items, relationships and properties all as
the states of bits held in computer memory makes a category error,
confusing the bit level and symbol level.

 While the wording of the definition can be changed, it betrays a
presupposition that Dooyeweerd makes visible: the reduction,
encountered in the Relational Data Model, of the analytic-formative
aspects to the quantitative-spatial. It may be that Dooyeweerd’s
notion of irreducibly different types of aspectual functioning
(quantitative, spatial, analytic, formative, social, etc.) could inform
attempts at a new definition of event.

 Likewise, their ontology begins with ’thing’, distinct. A
moment’s reflection on the need to deal with such things spatial
extension (such as in Funt’s [1980] Geometric Reasoner, and in bit-
field processing) and with Umwelten, reveals that W-W’s definition is
too narrowly defined. It too might benefit from Dooyeweerd’s
insights that things are meaningful wholes, can be non-distinct in
some aspects, and might include Umwelten. W-W’s recognition of
law is commensurable with Dooyeweerd.

 Wand and Weber differentiate internal from external events on
the basis of whether an event links to changes in the external world.
But to ’the people’ a more important distinction is between those
events etc. that are meaningful to the domain of application, and
those, internal to computer system, which are not meaningful. Many
of what W-W call internal events, such as the calculation of
secondary results and explanations, might be meaningful, whereas
iteration variables, for example, might not be. Likewise a coupling is
defined solely in terms of how one thing acts on another. This
precludes relationships of meaning rather than action, such as
ownership of a field, or which fields surround a piece of woodland.
These both betray a presupposition that meaning may be seen as
derivative rather than primary. Again, it is Dooyeweerd that gives us
grounds for questioning it and for turning it around, to our advantage
in the everyday life of the application.

 W-W frequently refer to meaning, suggesting they recognise its
importance in KR, but they do not incorporate it systematically into
their proposal. Dooyeweerd might help them do so.

 Class and kind are defined as sets of things that possess,
respectively, one and more than one common properties. The only
basis for differentiating types of thing is via class and kind. This
precludes a subject-oriented approach as discussed above, because it
presupposes some pre-identification of the properties of each type of
thing for which Harrison and Ossher [1993] criticise OO. As both
development and usage proceed, new properties are seen as relevant,
and existing properties change, undermining W-W’s notion of class or
kind. Dooyeweerd’s notion of types as enabling things rather than
merely describing sets of attributes, as well as his treatment of
typology (q.v.), might be useful in rectifying this and enriching W-
W’s notions.

Philosophical Frameworks for Understanding Information Systems - Draft p. 29

 Their notion of class or kind also means that all differences
between things are to be treated as of equal stature. This is
problematic because in our lifeworld, for example, birds and foxes
are more alike than birds and woodlands or symphonies. Both birds
and foxes are animals and are distinct entities, while woodlands are
spatial extensions rather than entities and have the property of being
an Umwelt, and symphonies are of human performance art. Wand
and Weber’s ’system environment’ cannot be used to represent
woodlands because it refers to that which is other than the computer
system, whereas we need to represent environment-ness within our
system. It is likely that both Clouser’s [2005] emphasis that aspects
are distinct basic types of property and Dooyeweerd’s theory of
entities could usefully inform W-W here.

 Wand and Weber actually made use of only one part of Bunge’s
ontology, The Furniture of the World [1977], and only part of that,
related to the notions of thing and change, and not those related to
substance, form, possibility and spacetime. But Bunge’s second
ontology, A World of Systems [1979], which explores different
systems genera -- physical, chemical, biological, social, technical --
they did not make use of. If they had, the last-mentioned problem
might have been reduced.

 However, we can criticise Bunge’s own work. First, Bunge’s
presupposition of substance and form as foundational notions may be
seen as rooted in Aristotle, which not everyone accepts, especially
those in IS of a subjectivist or criticalist persuasion. Second, while
Wand and Weber frequently mention ’meaning’, Bunge does not, so
we must ask how we might justifiably and systematically settle
meaning into such a system of thought. Nor does he have a place for
norms, echoing the Kantian Is-Ought divorce. Third, Bunge’s five
system genera may themselves be questioned, because the basis for
accepting those five is shaky. Whereas physical, chemical, biological
form a linear sequence, social and technical are placed side by side,
but no justification is given for this, nor even any explanation. And
where is the psychological level, which appears in most similar
attempts to define levels (such as Hartmann)? The answer Bunge
gives [1979,p.247] is "We might have distinguished a system genus
between biosystems and sociosystems, namely psychosystems. We
have refrained from doing so from fear [our emphasis] of encouraging
the myth of disembodied minds." Is ’fear’ a proper philosophical
reason? The problem is that Bunge ultimately fails to offer a sound
basis for differentiating systems genera. Fourth, Bunge focuses on
the worlds of science and pays very little attention to the lifeworld.
For these and other reasons, Bunge’s ontology might not be the best
philosophical foundation upon which to build an approach to
knowledge representation.

 These are the kinds of problems that Dooyeweerd predicted
would always emerge from the immanence standpoint (§2.3.3): the
divorcing of meaning from reality, "unmethodical treatment", and
absolutization. Instead, Dooyeweerd offers an alternative rendering
of these issues, based on a transcendence standpoint:

30 Understanding Technological Resources Ch. 7

 # Dooyeweerd provides a philosophically integrated account of
 meaning in relation to being, functioning and normativity,
 allowing meaning and even norms to have a valid place in
 ontology. This would enable W-W’s references to meaning
 to be incorporated as a systematic part of their proposal.
 # Aspects provide a sound basis for both differentiating and
 ordering systems genera. Indeed, Bunge’s systems genera is
 a subset of Dooyeweerd’s (see Table 3.1.2).
 # It is drawn from lifeworld and not just the worlds of science.
 # It does not arbitrarily separate furniture of world from world
 of systems; both function by same aspects, but are different
 functionings r.t. different aspects; result: no arbitrary
 division of, for example, things and relationships from
 justice and language.

As a result, Dooyeweerd might yield a better ontology than Bunge
[1977], [1979], which, as discussed above, might clear up some of
W-W’s anomalies. Dooyeweerd’s theory of time, which is not
discussed in this work, might also be useful to W-W.

7.5.1.4 Reflection

We have used Dooyeweerd in three different ways. The critique of
Codd’s Relational Data Model showed how Dooyeweerd can expose
aspectual reduction, of analytic-formative to quantitative-spatial, and
thereby explain the problems that have arisen in practice. The
critique of OO showed how Dooyeweerd can lay bare the
presuppositions underlying the central notion of ’object’. While
acknowledging strengths in the notion, it also exposed the nature of a
fundamental weakness already detected by Harrison and Ossher
[1993]. Unlike Harrison and Ossher, however, Dooyeweerd frees us
from the subjectivist, anti-objectivist reaction, to acknowledge and
integrate the insights of both sides. The critique of Wand and
Weber’s ontology showed how Dooyeweerd can be used to address
specific issues and trace the root of specific problems to a variety of
philosophical presuppositions. It also suggested how Dooyeweerd
could replace Bunge as the philosophical foundation for Wand and
Weber.

 What comes through clearly from all critiques is the influence of
the immanence standpoint in our data models and KR approaches. It
has forced their designers towards reduction, to presupposing the self-
dependence of things and/or events and away from taking meaning --
the all-important application meaning to users -- seriously as an
systematically integral part of their proposals. Meaning, where it is
acknowledged at all, is assumed to be reducible to epistemology. All
such proposals must, of necessity, concern themselves with ontology
rather only with than epistemology, and yet the immanence standpoint
has driven Western thought into opposing the two and pushing
ontology out of fashion in most IS communities today. But
Dooyeweerd, taking the transcendence standpoint, is able bridge such
gulfs, taking ontology seriously and allowing us to systematically
include meaning (and also normativity) as part of that ontology. This
is what our earlier proposal was able to achieve.

Philosophical Frameworks for Understanding Information Systems - Draft p. 31

 These three critiques have been brief and only indicative, but
they have shown that further work in the directions indicated is likely
to be fruitful. For our final application of Dooyeweerd we turn to
what is an overall approach and ethos rather than a precisely defined
data model, that based on Alexander’s Design Patterns.

7.5.2 Dooyeweerd and Alexander

Information systems developers face challenges not unlike those found
in architecture -- the design and putting together of a complex whole
with which human beings will engage as they live, with generic ideas
and components applied to the specific situations of the people for
whom the product is intended. So it is no surprise to find that
approaches devised in architecture are being brought into service
here. Both require an interdisciplinary approach, which in turn
demands a diversity of types of components that are ’reusable’ and
yet flexible. Design patterns is a notion borrowed from the architect,
Christopher Alexander [Alexander et. al., 1977], and adapted to
software by, for example, Gamma, Helm, Johnson and Vlissides
[1995].

7.5.2.1 Alexander’s Vision

The vision of Alexander and his team, expressed in their two books
The Timeless Way of Building [1979] and A Pattern Language [1977],
is to make "towns and buildings ... come alive" which will not
happen "unless they are made by all the people in society, and unless
these people share a common pattern language, within which to make
these buildings, and unless the common pattern language is alive
itself." [1977,p.x]. Design Patterns recognises the importance of
designing for the everyday lifeworld of those who will use what we
design.

 They present a ’language’ composed of ’patterns’, each of which
"describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice." To construct the
pattern language they

 "have also tried to penetrate, as deep as we are able, into the nature of things
 in the environment: and hope that a great part of this language, which we print
 here, will be a core of any sensible human pattern language, which any person
 constructs for himself, in his own mind. In this sense, at least a part of this
 language we have presented here, is the archetypal core of all possible pattern
 languages, which can make people feel alive and human." [ibid.,p.xvii]

His hopes for his language are expressed in interesting phraseology:
"that when a person uses it, he will be so impressed by its power, and
so joyful in its use, that he will understand again, what it means to
have a living language of this kind." [ibid.,p.xvii].

 253 patterns are defined, patterns 1-94 concern towns, 95-204
concern buildings and 205-253 concern construction -- the wider
context of buildings, buildings in use, and buildings as products to
develop.

32 Understanding Technological Resources Ch. 7

7.5.2.2 Design Patterns in information systems design

In ISD, likewise, problems occur over and over again and the core
solution to one problem is often applicable to others, though with
some appropriate modification. So, partly in response to a rigidity
that characterizes the extant KR languages, and partly because the
diversity of problems is not catered for in them, Design Patterns has
been used as a model to generate better KR ’languages’ based on a
patterns approach that could respond to the needs of software reuse
and maintenance in a changing usage environment.

 Gamma et. al. [1995] have detailed 23 patterns for use in object-
oriented design and development, five creational patterns, seven
structural patterns and eleven behavioural patterns. For example the
Observer behavioural pattern defines, for a given object, which objects
need to updated or informed when it changes. It is surprising how
few design patterns they believe are necessary (compared with
Alexander’s 253). This might be because their only case study is of
designing a document editor. For example, while they have a
Composite pattern to generate part-whole hierarchies, they do not
recognise other types of relationship. Curiously they do not treat lists
as patterns but rather as ’foundation classes’ that patterns may call
upon. But they do invite comment and extension.

 Several writers have made a critique of the patterns approach,
such as Budgen [2003]. But, unfortunately -- a personal observation
-- while the structural and methodological elements of design patterns
that have been adopted and the software engineering community does
seem to have taken seriously Alexander’s desire that pattern languages
should be created according to the needs of the discipline, the original
vision of joy and life seems missing.

 The roots of this approach are in practical and ’intuitive’ notions
-- which makes it important in our study as a lifeworld-oriented
perspective. But it seems to lack any proper philosophical foundation
or underpinning. As a result, the discipline is at the mercy of
unprincipled application or development, in response to fashion or
undue focus on specific classes of problem; one example is the
Flyweight pattern, made necessary by a problem arising from an
inappropriate implementation of text.

7.5.2.3 Dooyeweerdian analysis of Design Patterns

We can see, or perhaps feel, a degree of affinity between Alexander’s
Design Patterns and Dooyeweerd, in their motivation, orientation and
outworking. Both thinkers "tried to penetrate ... into the nature of
things" [Alexander et. al., 1977,p.xvii]. Both were courageous
enough to attempt complete coverage, as Alexander’s ’all possible
pattern languages’ and Dooyeweerd’s suite of aspects. Both recognise
richness. Alexander’s orientation to the idea of a core of reality, a
"nature of things in the environment" with a recognition that every
person holds a different view, is not unlike Dooyeweerd’s
acknowledgement of a reality that transcends us alongside the
freedom of human knowing and believing. We can see a deep
similarity in their beliefs about language as something individual yet

Philosophical Frameworks for Understanding Information Systems - Draft p. 33

social, and alive yet responsible.

 Especially in words like ’alive’ and ’joyful’ we can immediately
feel the affinity between Alexander and Dooyeweerd in their
outworking. ’Alive’ is close to Dooyeweerd’s notion that all things
are subjects rather than merely passive objects, and yet meaningful in
every aspect (§2.4.4). ’Joyful’ is similar to the Dooyeweerdian
notion of shalom as full, healthy, positive functioning in diverse
aspects (§3.4.3). Each pattern is related to a ’problem’ that makes it
meaningful, but also to its ’context’ within wider patterns and to
’smaller’ patterns, which are not seen as parts but as important in
their own right. This echoes the Dooyeweerdian notions primacy of
meaning, entitary interlacement, and enkaptic whole-whole relations.

 Asking, of the 253 patterns, "What is this pattern trying to
achieve? What (aspectual) normativity makes this a problem to be
addressed?", to see which aspect is most meaningful in each, gives
the results shown in Table 7.5.2.3.1. For this analysis, a
differentiation was made in the social aspect between groups of
people and cultural matters, and in the aesthetic aspect between
harmony (integration, balance and coherence) on the one hand, and
style (beauty, fun and rest) on the other. There is a row for patterns
that could not be clearly placed, and one for multi-aspectual patterns.

 Table 7.5.2.3.1. Aspectual spread of Alexander’s patterns

Quantitative 96

Spatial 21 37 167 195

Kinematic 20 23 34 49 56 120 131

Physical

Biotic 4 47 65 70 72 118 169 170 175 177

Aspect Towns Construction

Sensitive 54 55 60 62 71 74 82 92
93 94

97 98 105 109 114 115
119 121 125 132 137 138
142 161 163 164 173 176
180 182 190 192 196 197
199 201 202 117 203

Analytic 14 15 53 57 102 110 111

Formative 16 50 73 78 83 104 108 146 171

Lingual 12 18 43

Social 95 100 101 122 123 124
127 129 139 141 143 147
148 149 151 152 179 185
186 188 193

Economic 11 19 22 32 39 103 106 145 150 153 162
178 198 200 204

Aesth: Hmny 3 5 9 17 29 35 42 51 52 99 107 116 126 130 133
140 156 157 158 160 166
168 181 194

Juridical 1 7 10 79 172 183 184

Ethical 136 187

Pistic 24 66 80 81 84 154 155

231

211 212 213 215 218 219
225 227 234 236

223 230 235 237 250 233

229

208 240

242

206 228

214 222 241 246 248

205 207 209 210 243

Buildings

Aesth: Style 28 38 46 58 59 63 69 87
88 90

112 113 128 134 135 174
191

216 217 221 224 226 232
238 239 244 245 247 249
251 252

Soc: Culture 6 8 40 ’ 253

2 13 27 30 31 33 36 41 44
45 48 61 67 68 75 76 77
86 89 91

Multiple 26 220

Unplaced 25 64 85 144 159 165 189

34 Understanding Technological Resources Ch. 7

 Such an aspectual analysis of design patterns may reveal a
number of things, if we take Dooyeweerd’s suite to be reasonably
comprehensive and well-founded:

 # Aspectual spread can indicate to what extent the creators of
 the set of patterns are sensitive to the diversity found in the
 lifeworld, as opposed to focusing on certain aspects currently
 deemed fashionable by researchers or developers. That
 every aspect is represented in Alexander’s set suggests he
 and Dooyeweerd have a similarly wide recognition of
 meaning.

 # Every thinker is part of a community but also tries to send a
 message. Aspectual analysis can reveal which aspects are
 most important to the community and to the thinker. In this
 case, the sensitive and aesthetic (style) aspects are to be
 expected in most architects, while the social and aesthetic
 (harmony) aspects reflect Alexander’s desire that buildings
 should enhance community and harmonise.

 # A different aspectual profile would be expected in the three
 columns, in that Construction is a physical and technical
 activity, in Buildings the human user is central, and Towns
 concerns society and its (pistic) vision. In Alexander we find
 largely what we expect; if we did not, we could question
 their treatment of these issues.

 # Considering under-represented aspects can also provide
 insight. In Alexander, for example, why is there so little of
 the lingual aspect? In the three columns, respectively, it
 could cover public signage and communication, deliberate
 signification in and around the buildings, and communication
 during the construction process. It is only an aspectual
 analysis of this kind that can expose the omission of whole
 spheres of meaning.

 # The low number of unplaced and multi-aspectual patterns can
 indicate that the patterns are clearly thought out as to their
 meaning. A high number would indicate either a confused
 understanding, or that Dooyeweerd’s suite needs
 modification.

 If we perform a similar aspectual analysis on the patterns oriented
to software in Gamma et. al. [1995], we find a very different picture;
Fig. 7.5.2.3.2, where patterns are identified by page number, and are
grouped into patterns that guide creation, structure and behaviour of
objects in the program.

 With only 23 patterns our analysis must be more cautious. Since
nearly half the patterns are primarily formative, we can clearly detect
a heavy emphasis on technical matters. That the juridical aspect
makes a reasonable appearance suggests that Gamma et. al. recognise
the need to do justice to the diversity of the world to be represented,
and this is supported by examining their text.

Philosophical Frameworks for Understanding Information Systems - Draft p. 35

 Table 7.5.2.3.2. Gamma’s Design Patterns for Software

 Eight aspects are missing. But with so few patterns, we should
look at groups of, rather than single, under-represented aspects.
Where, for example, are the aspects which are important to the user
interface: the sensitive, spatial and kinematic? Where are the human
and social aspects? Examining their text we find that most of the
post-social aspects concern, not human use nor the wider social
context of use, but the ’objects’ an classes of which the software is
composed. Gamma et. al. almost wholly focus on what Alexander
called construction and display little awareness of software’s use and
wider context. This analysis might suggest that Gamma et. al’s set of
patterns is in danger of directing the developer’s attention away from
the all-important human and social issues of use of the software in
context to mere technical issues, and of failing to support the
sensitive, spatial and kinematic aspects of UI.

 The analysis of Alexander’s patterns generated fairly supportable
indications of what they deemed important, but the way aspectual
analysis is used here is different. Here aspectual analysis suggests

issues that deserve further examination in the text, and it is this that
exposes gaps or over-emphases in their approach to bring Design
Patterns to IS.

 It can also be helpful to subject single patterns, especially
problematic ones, to Dooyeweerdian scrutiny. For example the
Flyweight pattern [Gamma et. al., 1995,p.195] introduces clumsy
complexity. It was motivated by the inefficiency of requiring each
letter of text to hold the full set of attributes that text as such does
(font, etc.), working to strip letters of such attributes. But it is an
unsatisfactory solution because it misdiagnosed the problem, assuming
that text may be seen as aggregations of letters into rows.

Quantitative 127

Spatial

Kinematic

Physical

Biotic

Aspect Creation Behaviour

Sensitive

Analytic

Formative 107 117 151 163 185

Lingual 97

Social

Economic ’195 207

Aesth: Hmny

87

139

Juridical 175

Ethical

Pistic

229

233 273 283 305 325 331

243,

293

223 315

Structure

Aesth: Style

36 Understanding Technological Resources Ch. 7

Dooyeweerd’s treatment of wholes (see chapter 3) urges us to ask
what are the meaningful wholes of this lingual thing that is text. Our
answer would presumably include such things as words, sentences,
headings, and would not include rows, the main meaning of which is
spatial, nor include letters, since they cannot stand alone as lingual
wholes. As wholes, letters are analytic rather than lingual, and so
cannot be see as part of words etc. In view of this, letters should
never have been treated in the way text is, with all the lingually-
relevant features. The root of the problem is a fundamental
misunderstanding of the nature of part-whole relations.

 Sadly, such misunderstandings are very common in the OO
community and indeed the whole systems community, because they
have no basis for recognising true wholes nor enkaptic relations.

 Thus a Dooyeweerdian analysis of meaning can serve as a useful
critique of individual patterns as well as of the whole approach. The
root of the problem lies not so much in the individual pattern as in the
OO paradigm, which is based on an existence-oriented
presupposition, the problems of which have been discussed in chapter
3 and does not provide the concepts like enkapsis with which to
distinguish different types of relationship.

 But Dooyeweerd can take us further than critique. If, as
suggested in this chapter’s main proposal, it is possible in principle to
provide modules that implement the meaning of every aspect, then it
should be possible to provide patterns related to every aspect and
realize something of Alexander’s vision in IS.

7.6 CONCLUSION

7.6.1 Overview of Framework for Understanding

This area is concerned with the design and preparation of
technological resources like knowledge representation languages and
basic software facilities intended to be used by IS developers --
equivalent to the design and preparation of things like bricks, planks
of timber, nails, hammers, etc. to be used by builders of houses. As
with the nature of computers (chapter 5), one might wonder to what
extent the preparing of basic technological resources and building
blocks can be viewed as everyday experience. It seems too technical
a field, but a moment’s reflection on the similar construction industry
will affirm that there is an everyday lifeworld.

 After a review of what has motivated the design of KR
languages, it became clear that Brachman’s notion of ’KR to the
people’ was a key to the everyday lifeworld of this area. This is the
normative proposal that ’ordinary’ people should be able to make use
of these general technological resources in order to construct
computer systems for themselves, without needing to call upon an
expert programmer.

 This led to the starting point that an important characteristic
required of technological resources to achieve this is appropriateness

Philosophical Frameworks for Understanding Information Systems - Draft p. 37

-- that the basic resources with which an IS might be constructed
should be ’natural’. But, to understand what this means requires
taking a step back to first understand the nature of these resources
themselves. This is facilitated by Dooyeweerd’s ontic analysis of
similar resources in the construction industry:

 # Basic technological resources are semi-manufactured
 products, the leading aspect of which is not internal but
 external; their very nature is to reach out to the diverse
 spheres of meaning of the domain of appliction.

Unlike planks, bricks and nails, which are centred on the physical
aspect, the operation of these resources is centred on the lingual,
formative and analytic aspects which qualify knowledge elicitation
and representation in ISD (chapter 6). These resources are such
things as KR languages, with their tokens, inter-file protocols,
subroutines, and code libraries.

 Such resources have to be designed and implemented. But so do
the technical artefacts of the IS developer; what is the difference?
The key difference, it was suggested, is that what the IS developer
designs for is concrete subject-side situations and requirements, while
these basic resources embody the law side. Their generality is thus
not just a matter of degree but different in kind. So the principle that
should guide their design is:

 # For each and every aspect, a set of basic facilities and KR
 language tokens should be available that express its cosmic
 meaning, as it may be actualized in the various philosophical
 roles that aspects have (things, properties, relations, activity,
 inferences, constraints, etc.).

This is the root of appropriateness. It is based on the belief that
aspects, as spheres of meaning and law, enable these very things (see
§3.1.5). Thus this area makes use of Dooyeweerd’s approach to
ontology, as transcending us but based on meaning rather than being.

 A practical proposal was made that a module that contains these
things be prepared for each aspect. Evidence that this is feasible
comes from the fact that software has been developed which is
qualified by each aspect. The implementation of such modules at the
bit level was briefly discussed. But the modules must integrate and
work with each other, and be open to future requirements, especially
when we begin with modules only of the earlier aspects. So:

 # The relations between modules reflects that between aspects:
 the modules are irreducible to each other, but they are to be
 linked by foundational dependency, anticipatory dependency,
 analogy and reaching-out, all of which should be taken into
 account in the design of modules.

Anticipatory relations are important for future-proofing the modules.

 The benefits accorded by this framework are that it provides fresh
impetus to consider the diversity of basic, intuitive meaning that IS

38 Understanding Technological Resources Ch. 7

developers might encounter and not delegate the responsibility for
implementing some of this to developers who might not be expert in
it. Only thus will it be possible to provide the range of resources that
IS developers actually need to cope with real-life complexity. This in
turn will help bring ’KR to the people’.

 This proposal might be seen as a grand vision for an all-
encompassing KR toolkit. But, realistically, it may be more useful as
a framework within which to situate extant work. For example, it
could be seen as a counterfactual ideal against which to evaluate other
proposals. Two examples were given by which current proposals
were critiqued, that of Wand and Weber [1995], which represents one
of the best-developed general KR ontologies to date, and the
importation of the idea of Design Patterns from the field of
architecture, which is arousing much excitement in the Object-
Oriented community.

7.6.2 The Mission of Bringing Information Technologies into
Being

We have been discussing how to bring small pieces of information
technology into being, as building blocks and other resources for the
IS developer to use. But should we bring information technologies
into being? What should guide and motivate this process? A
presumed inner dynamic of IT itself (technological determinism)? A
social construction of technology? Market forces of the IT industry?
The whim or even the ’existential joy’ it brings to those who create
it? And what about obsolescence?

 Dooyeweerd held that humankind is called normatively to open
up of the potential of all aspects as spheres of meaning and law, and
this for the overall blessing of the cosmos. This idea is examined in
chapter 8, where the development of technology may be seen as an
’meaning disclosure’, and that of ICT as a whole as the opening up of
the lingual aspect of information and representation, and perhaps also
the formative aspect (technology). So the general answer to the first
question is "Yes", and it should be guided by the norms of all other
aspects, especially post-lingual.

 But more specifically, the coming into being of any particular
piece of ICT may be seen as an opening up of the aspect that is
represented. The norms that should guide this progress is not that of
the lingual or formative aspect themselves, but that of the represented
aspect, followed closely by all other aspects, governed by the shalom
principle (q.v.).

 This leads us to think of obsolescence in a different way. A
certain piece of technology might happen to no longer suit our current
historical circumstances, but the meaning it discloses cannot be
undisclosed. Therefore, in general, while we might cease to use it for
a while, humanity has a mandate to protect its having-been-disclosed.

 However, this disclosure of pieces of meaning is not the end of
the story, because we are led outwards from the specific ones we
develop to those our community develops to those society develops,

Philosophical Frameworks for Understanding Information Systems - Draft p. 39

and eventually to ICT as a whole, as a global, historical, societal,
religious phenomenon. This becomes the very environment in which
we live and have our being, which affects our habits, aspirations and
expectations, and which is itself inscribed by by these very things,
our world-view. This is the topic explored in the next chapter.

References

Alexander, C. (1979). A timeless way of building. Oxford, England: Oxford University
 Press.
Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fikidahl-King, I., & Angel, S.
 (1977). A pattern language: Towns, buildings, construction. New York: Oxford
 University Press.
Basden, A. (1993). Appropriateness. In M. A. Bramer, & A. L. Macintosh (Eds.), Research
 and development in Expert Systems X (pp. 315-328). Cranfield, England: BHR Group.
Basden, A., Ball, E., & Chadwick, D.W. (2001). Knowledge issues raised in modelling trust
 in a public key infrastructure. Expert Systems, 18(5), 233-249.
Basden, A., & Brown, A. J. (1996, November). Istar - a tool for creative design of
 knowledge bases. Expert Systems, 13(4), 259-276.
Basden, A., & Clark, E. M. (1979). Errors in a computerized medical records system
 (CLINICS). Medical Informatics, 4(4), 203-208.
Basden, A., & Hines, J. G. (1986). Implications of the relation between information and
 knowledge in use of computers to handle corrosion knowledge. British Corrosion
 Journal, 21(3), 157-162.
Basden, A., & Nichols, K. G. (1973). New topological method for laying out printed
 circuits. Proceedings of the IEE, 120(3), 325-328.
Booch, G. (1991). Object-oriented design with applications. Redwood City, CA: Benjamin-
 Cummings.
Brachman, R. J. (1990). The future of knowledge representation. In American Association
 for Artificial Intelligence, AAAI-90: Proceedings of the Eighth National Conference on
 Artificial Intelligence (pp. 1082-1092). Boston: AAAI.
Brandon, P. S., Basden, A., Hamilton, I., & Stockley, J. (1988). Expert Systems: Strategic
 planning of construction projects. London: The Royal Institution of Chartered Surveyors.
Budgen, D. (2003). Software design (2nd ed.). Harlow, U.K.: Pearson Education/Addison-
 Wesley.
Bunge, M. (1977). Treatise on basic philosophy, Vol. 3: Ontology 1: The furniture of the
 world. Boston: Reidal.
Bunge, M. (1979). Treatise on basic philosophy, Vol. 4: Ontology 2: A world of systems.
 Boston: Reidal.
Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.
Clouser, R. (2005). The myth of religious neutrality: An essay on the hidden role of
 religious belief in theories (2nd ed.). Notre Dame, IN: University of Notre Dame Press.
Codd, E. A. (1970). A relational model for large shared databanks. Communications of the
 ACM, 13(6), 377-387.
Dooyeweerd, H. (1984). A new critique of theoretical thought (Vols. 1-4). Jordan Station,
 Ontario, Canada: Paideia Press. (Original work published 1953-1958)
Funt, B. V. (1980). Problem-solving with diagrammatic representations. Artificial
 Intelligence, 13(3), 201-230.
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Elements of
 reusable object-oriented software. Reading, MA: Addison-Wesley.
Gennart, J. H., Tu, S. W., Rothenfluh, T. E., & Musen, M. A. (1994). Mapping domains to
 methods in support of reuse. International Journal of Human-Computer Studies, 41, 399-
 424.
Gibson, J. J. (1977). The theory of affordances. In R. Shaw, & J. Bransford (Eds.),
 Perceiving, acting and knowing (pp. 67-82). Hillsdale, NJ: Erlbaum.
Greeno, J. (1994). Gibson’s affordances. Psychological Review, 101, 336-342.
Harrison, W. H., & Ossher, H. (1993). Subject-oriented programming: A critique of pure
 objects. In Andreas Paepcke (Ed.), Proceedings from Conference on Object-Oriented
 Programming Systems, Languages, and Applications (OOPSLA), Eighth Annual
 Conference, 26 September - 1 October, Washington, DC (pp 411-428). New York:
 ACM.
Hines, J. G., & Basden, A. (1986). Experience with the use of computers to handle
 corrosion knowledge. British Corrosion Journal, 21(3), 151-156.
Jones, M. J., & Crates, D. T. (1985). Expert Systems and videotext: And application in the
 marketing of agrochemicals. In M. A. Bramer (Ed.), Research and development in
 Expert Systems: Proceedings of the fourth Technical Conference of the British Computer
 Society Specialist Group for Expert Systems. Cambridge, England: Cambridge
 University Press.
Levesque, H. J., & Brachman, R. J. (1985). A fundamental tradeoff in knowledge
 representation and reasoning (Revised Version). In R. J. Brachman, & H. J. Levesque
 (Eds.), Readings in knowledge representation. Los Altos, CA: Morgan Kaufmann.

40 Understanding Technological Resources Ch. 7

Lombardi, P. L. (2001). Responsibilities towards the coming generations: Forming a new
 creed. Urban Design Studies, 7, 89-102.
Minsky, M. (1981). A framework for representing knowledge. In J. Haugeland (Ed.), Mind
 design. Montgomery, VT: Bradford Books/MIT Press.
Nilsson, N. J. (1998). Artificial Intelligence: A new synthesis. San Francisco: Morgan
 Kaufmann.
Quillian, M. R. (1967). Word concepts: a theory and simulation of some basic semantic
 capabilities. Behavioral Science, 12, 410-430.
Stamper, R. (1977). Physical objects, human discourse and formal systems. In G. M.
 Nijssen (Ed.), Architectures and models in database management systems (pp. 293-311).
 Amsterdam: North Holland.
Stephens, L. W., & Chen, Y. F. (1996). Principles for organizing semantic relations in large
 knowledge bases. IEEE Transactions on Knowledge and Data Engineering, 8, 492-496.
Wand, Y., & Weber, R. (1995). On the deep structure of information systems. Information
 Systems Journal, 5, 203-224.
Winfield, M. (2000). Multi-aspectual knowledge elicitation. Unpublished doctoral Thesis,
 University of Salford, England.
Winch, P. (1958). The idea of a social science and its relation to philosophy. London:
 Routledge and Kegan Paul.

